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Benefit–cost integrated assessment models (BC-IAMs) inform climate
policy debates by quantifying the trade-offs between alternative
greenhouse gas abatement options. They achieve this by coupling
simplified models of the climate system to models of the global econ-
omy and the costs and benefits of climate policy. Although these
models have provided valuable qualitative insights into the sensitivity
of policy trade-offs to different ethical and empirical assumptions,
they are increasingly being used to inform the selection of policies
in the real world. To the extent that BC-IAMs are used as inputs to
policy selection, our confidence in their quantitative outputs must
depend on the empirical validity of their modeling assumptions. We
have a degree of confidence in climate models both because they
have been tested on historical data in hindcasting experiments and
because the physical principles they are based on have been empir-
ically confirmed in closely related applications. By contrast, the eco-
nomic components of BC-IAMs often rely on untestable scenarios, or
on structural models that are comparatively untested on relevant
time scales. Where possible, an approach to model confirmation sim-
ilar to that used in climate science could help to build confidence in
the economic components of BC-IAMs, or focus attention on which
components might need refinement for policy applications. We illus-
trate the potential benefits of model confirmation exercises by per-
forming a long-run hindcasting experiment with one of the leading
BC-IAMs. We show that its model of long-run economic growth—one
of its most important economic components—had questionable pre-
dictive power over the 20th century.

climate policy | integrated assessment | model confirmation | structural
uncertainty | economic growth

Prediction is very difficult, especially about the future.

Niels Bohr

Alittle over 20 years ago a seminal article on the interpreta-
tion of numerical models in the earth sciences appeared in a

leading scientific journal (1). The authors argued that although
verification and validation of these models is strictly logically im-
possible, model confirmation is a necessary and desirable step. In
the intervening years an impressive body of work in climate science
has compared the predictions of global climate models with ob-
servations. Chapter 9 of the Intergovermental Panel on Climate
Change’s Fifth Assessment report summarizes recent work (2),
stating that “model evaluation . . . reflects the need for climate
models to represent the observed behaviour of past climate as a
necessary condition to be considered a viable tool for future
projections.” Scientists continue to use empirical tests of climate
models to refine and improve them, while also reflecting on the
methodological questions that arise when interpreting model
predictions to inform decision making (3).
Climate models are, however, only a part of the technical appa-

ratus that has been developed to inform climate policy decisions.
Integrated assessment models (IAMs) provide the link between
physical science and policy. IAMs come in two varieties: benefit–cost
models, which attempt to estimate the aggregate costs and benefits of
climate policy to society, and detailed process models, which usually
analyze more detailed policies in a cost-effectiveness framework (i.e.,
assuming an exogenous policy objective), often in much greater
sectoral detail than the highly aggregated benefit–cost models (4).

We focus on benefit–cost IAMs (BC-IAMs) in this article, because
these have been the focus of research activity in economics (5, 6) and
are increasingly influential in policy applications.
BC-IAMs couple simplified climate models with representations

of the global economy in an attempt to understand the trade-offs
between alternative policy options. They have been applied to a
wide variety of questions. How might different welfare frameworks
affect the attractiveness of policy options (7)? Which approaches to
international agreements are likely to succeed (8)? How might
different policy instruments affect innovation in energy technologies
(9)? These modeling exercises provide valuable insights into the
possible qualitative differences between policy options. However,
their quantitative implications are conditional on the veracity of the
underlying models. BC-IAMs can be used to show that policy A
leads to higher welfare than policy B in model X, but to extend this
model-based finding to claims about reality we need to know how
well X approximates reality. Are the equations and initialization
procedures used by model X structurally sound, and, if not, what
risks might we run by treating them as if they are?*
Assessing the structural soundness of economic modeling as-

sumptions in BC-IAMs has recently become an increasingly pressing
issue, because they are beginning to be used to inform quantitative
real-world policy decisions. For example, the US government has
recently established an interagency working group (10, 11) to esti-
mate a value of the social cost of carbon (SCC), the welfare cost to
society from emitting a ton of CO2. The value of the SCC that was
adopted will form part of the cost–benefit assessment of all federal
projects and policies, and thus has the potential to influence billions
of dollars of investment. The process used to establish a value for the
SCC relied heavily on BC-IAMs, the first time they have directly
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informed quantitative federal rules. Whereas the US SCC estimate is
perhaps the most prominent recent example, other governments and
international organizations are also increasingly turning to BC-IAMs
to inform policy choices.
As soon as a model is used to inform quantitative policy decisions,

the criteria by which it must be judged become more demanding. A
given model may be a useful tool for exploring the qualitative im-
plications of different assumptions, but in order for it to be profitably
applied to policy choices we need to know how plausible those as-
sumptions are as empirical hypotheses about how the world works. If
a model can be shown to be structurally flawed in hindcasting exer-
cises, our expectation should be that similar errors might occur when
using it to make predictions that inform policy choices today. No
model is perfect, and we should not expect any given model to ensure
us against regret entirely. However, to the extent possible, it is in our
interests to attempt to ascertain how wrong we might go when relying
on a model to make decisions. As has occurred in climate science,
this exercise could build confidence in those economic modeling
assumptions that are found to be consistent with empirical data, and
focus attention on those assumptions that may require refinement for
policy applications.
Importantly, confirmation exercises provide entirely different in-

formation about a model’s validity frommodel calibration, sensitivity
analysis, probabilistic approaches to quantifying parametric un-
certainty, or expert elicitation of model parameters, all of which are
standard practice in the field. These uncertainty quantification
methods explore the space of model outcomes (and perhaps esti-
mate their likelihood), taking the model’s structural assumptions as
given. Model confirmation, however, tests whether the equations
and initialization procedures a model uses to generate predictions
are able to provide a good representation of observed outcomes. A
model whose outcome space has been explored using the un-
certainty quantification methods mentioned above may still yield
error-prone predictions if the underlying modeling assumptions
are not a good fit to reality. Although these methods can of course
generate a distribution of model outcomes, whether or not such
distributions reflect the uncertainty we actually face depends on the
structural soundness of the model used to generate them. We note
that model confirmation is only possible if a model is specified in a
self-contained manner (i.e., it is composed of a set of structural as-
sumptions and free parameters that can, at least in principle, be
estimated from data). This makes models that rely on fixed external
scenarios for generating predictions very difficult to confirm ex ante.
Although such models could provide a good characterization of
current uncertainty, we have no way of assessing whether this is likely
to be the case by testing their past performance.
Although the physical science models upon which the scientific

components of BC-IAMs are based have often been subjected to
tests of structural validity, their economic components are often ei-
ther based on untestable exogenous scenarios, or on structural
modeling assumptions that are largely untested on the temporal
scales that are relevant to climate applications. In part this reflects
genuine data difficulties, which make some economic assumptions in
BC-IAMs very difficult to confirm. For example, BC-IAMs assume a
functional form for the climate damage function, which quantifies
the impact of global average temperature changes on the aggregate
productivity of the economy. BC-IAM results are highly sensitive to
the rate of increase of damages with temperature at high tempera-
tures, but because we have only seen a small amount of average
warming so far, it is very difficult to test any assumed functional form
for damages. Some of the most important economic components of
some BC-IAMs are, however, amenable to empirical tests.

An Out-of-Sample Test of a Model of Long-Run Economic
Growth
To demonstrate what may be learned from model confirmation
exercises we focus on the economic growth model used by the well-
known Dynamic Integrated Climate-Economy (DICE) BC-IAM

(15). The assumptions BC-IAMs make about long-run economic
growth have a very substantial effect on leading policy outputs such
as the SCC. This is because economic growth strongly affects the
path of greenhouse gas emissions, the magnitude of climate dam-
ages, and the wealth of future generations, all key determinants of
the aggregate costs and benefits of climate policy. Unlike other well-
known BC-IAMs [e.g., refs. 16 and 17], which rely on external sce-
narios for economic growth that are impossible to test empirically ex
ante, DICE uses an explicit model of economic growth that makes it
well-suited to empirical testing, and is also widely deployed across
climate economics (see, e.g., ref. 18). A crucial part of this growth
model is a model of the temporal evolution of total factor pro-
ductivity (TFP), a quantity that sets the overall level of technological
advancement in the economy. Economic growth is largely driven by
technological progress in DICE. Thus, although policy evaluation in
DICE is also highly sensitive to other structural modeling assump-
tions (e.g., the shape of the damage function and the evolution of
abatement costs), a lot depends on how it models overall techno-
logical progress.†

To test the structural assumptions and initialization procedures
used by DICE’s economic growth model, we consider the following
question: How would this model fare if we asked it to predict the
growth path of a major economy over the 20th century? This
question is closely analogous to those asked of climate models by
climate scientists (2). The model of the evolution of the economy
DICE employs is a version of the Ramsey neoclassical growth
model, familiar to any student of macroeconomics (see ref. 19 for a
detailed exposition). In this model economic output is generated by
competitive firms and is either consumed or reinvested in firms.
Firms produce output via a production technology, which uses the
capital and labor supplied by consumers as inputs. In DICE tech-
nological progress is modeled as an increasing trend in TFP, which
acts as a multiplier on firms’ production technologies. Thus, as TFP
grows, and the technologies of production become more advanced,
fewer capital and labor inputs are required to generate a given level
of economic output. A specific model of the time dependence of
TFP is assumed in DICE. This model depends on free parameters
that can be estimated from economic history.‡

We test this model’s predictive performance using recently
compiled data on the US economy from 1870 to 2010 (21). We
single out the United States because it is the largest economy for
which detailed long-run economic data are available, and be-
cause of its position at the technological frontier over much of

†This view is confirmed by Nordhaus (12): “The major factor producing different climate out-
comes in our uncertainty runs is differential technological change. In our estimates, the pro-
ductivity uncertainty outweighs the uncertainties of the climate system and the damage
function in determining the relationship between temperature change and consumption.” A
global sensitivity analysis of the DICE model confirms that its SCC estimates are highly sensitive
to the growth rate of TFP (13). A heuristic understanding of why policy recommendations are so
sensitive to assumptions about TFP growth can be obtained by studying the social discount rate
ρðtÞ. Under standard assumptions the change in social welfare that arises from a small change in
consumption Δt that occurs t years in the future is given by Δte−ρðtÞt. Standard computations
(14) show that in a deterministic setting ρðtÞ= δ+ ηgðtÞ, where δ is the pure rate of social time
preference, η is the elasticity of marginal utility, and gðtÞ is the average consumption growth
rate between the present and time t. In most cases the term ηgðtÞ is the dominant contribution
to ρðtÞ. Because consumption growth gðtÞ is driven by TFP growth in DICE, the present value of
future climate damages is highly sensitive to TFP growth. For example, for δ= 1%/y, η= 2 and
gð100Þ= 1%/y an incremental climate damage of $100 that occurs 100 y from now will be
valued at $100e−ð0.01+2×0.01Þ100 ≈ $5 in present value terms. For gð100Þ= 2%/y, however, the
same $100 damage would be worth $100e−ð0.01+2×0.02Þ100 ≈$0.7. Thus, an increase in consump-
tion growth from 1% to 2%/y reduces the current welfare cost of climate damages that occur in
100 y by a factor larger than 7.

‡DICE assumes that the growth rate of TFP is an exponential function that slowly decays
from an initial value to a smaller long-run value. The free parameters are the initial
growth rate and the rate of decline of the growth rate. A large literature has developed
endogenous growth models that relate the evolution of TFP to endogenous economic
variables (see refs. 19 and 20 for a review of applications to climate economics). Because
we wish to stay as close as possible to the methodology used by DICE, we do not in-
vestigate the empirical performance of these models here, but see comments below and
Supporting Information, Endogenous Growth Versions of the DICE Model.

8676 | www.pnas.org/cgi/doi/10.1073/pnas.1604121113 Millner and McDermott

D
ow

nl
oa

de
d 

at
 P

al
es

tin
ia

n 
T

er
rit

or
y,

 o
cc

up
ie

d 
on

 D
ec

em
be

r 
31

, 2
02

1 

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1604121113/-/DCSupplemental/pnas.201604121SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1604121113/-/DCSupplemental/pnas.201604121SI.pdf?targetid=nameddest=STXT
www.pnas.org/cgi/doi/10.1073/pnas.1604121113


www.manaraa.com

the 20th century (22). Our tests are as generous as possible to the
model (e.g., we assume a perfect forecast of labor supply) and
stick closely to the calibration and forecasting methodology used
by DICE (details of the model implementation are available in
Supporting Information). To test the model’s predictive power we
divide the data into different training and verification windows;
95% confidence intervals (CI) for the parameters of the TFP
model are inferred from the training data. The state equation for
the capital stock and empirically estimated model of TFP evo-
lution are then used to predict economic output.
Fig. 1 is illustrative of our model estimation and confirmation

methodology. The figure depicts a long-run forecast of TFP and
economic output obtained by estimating the TFP model on the
50 y of data from 1870 to 1920. Fig. 1, Left depicts the fit of the
TFP model to the training data and its out-of-sample projection
of TFP. Fig. 1, Right shows an out-of-sample projection of gross
domestic product (GDP) at 1920, which is generated using the
empirically estimated TFP model, the state equation for the
evolution of the capital stock, and a perfect forecast of labor
supply. The figure shows that although the TFP model fits the
training data well, its out-of-sample forecast substantially un-
derestimates technological progress in the latter half of the 20th
century. These errors are compounded for GDP projections,
because persistent underestimates of TFP affect predicted in-
vestment flows and capital formation in each future period,
which further bias the model downward. We note, however, that
although the presence of model errors is significant, the fact that
the model was downward-biased in 1920 does not imply that it
will be downward-biased in all periods, as we demonstrate below.
Although the out-of-sample forecasts of TFP and GDP the

model generates in 1920 are not successful, they nevertheless
look reasonable when viewed from the perspective of the 50-y
data series up to that year. Had economists produced these
predictions at the time based on only these 50 y of data, they
would no doubt have been perceived as plausible future growth
scenarios. From today’s perspective, however, the model looks

like a less-reliable predictive tool. An important reason why the
model performs poorly is that the post-World War Two boost in
productivity growth is not presaged in the training data at 1920.
This finding is indicative of the difficulty of predicting long-run
technological developments. We face precisely the same diffi-
culties today when using BC-IAMs to project economic growth
into the next century and beyond (see Supporting Information for
further discussion).
Whereas Fig. 1 suggests that the model’s long-run predictive

performance could be a concern, it focuses on only a single
forecasting date, 1920. In addition, even if the model’s long-run
predictions are flawed, it could be a useful predictive tool on
intermediate time scales (e.g., 30 y), where unpredictable tech-
nological jumps are less likely to make past data unrepresenta-
tive of future outcomes. Although 30 y may seem a short forecast
horizon for a problem as long-lived as climate change, fully 50%
of the value of the SCC is determined by outcomes over this
period under some parameterizations of the DICE model (23).§

To address these issues, Fig. 2 extends the analysis of Fig. 1,
summarizing the model’s predictive performance at each year in
the data series, for 30- and 50-y training and confirmation win-
dows. For each year in the period 1900–1980 (1920–1960) the
model was trained on the previous 30 (50) y of data, and the
estimated model used to forecast GDP for the next 30 (50) y.
Although the model performs well in some 30-y periods, in most
years the realized growth outcome falls outside of the forecasted
interval. Arguably, the model is thus not a successful predictive
tool on this shorter time scale, despite less sensitivity to large
unpredictable shifts in the technological frontier. For 50-y fore-
casts, the model performs well post-World War II, but poorly in the
prewar period. This shows that the illustration of model perfor-
mance depicted in Fig. 1 is not exceptional. The 50-y forecasts
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Fig. 1. Long-run forecasts of US TFP (Left) and economic output (Right) from the economic growth model used by DICE. The model was trained on the data
from 1870 to 1920 and projections made in 1920. Solid red lines are realized data values. Dashed black lines are forecasts generated using model parameter
values at the boundary of estimated 95% CI, and solid black lines (Left) show the fit of the TFP model to the data over the training window.

§This finding is dependent on choices of welfare parameters, which in turn affect the
social discount rate. All else equal, lower (higher) social discount rates make SCC values
more (less) dependent on forecasts of the near future.
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further illustrate the sensitivity of growth projections to structural
breaks of the kind that followed the war and demonstrate the value
of a long historical perspective. Had we only evaluated the model
on the most recent 60 y of data we would likely have overestimated
its long-run predictive performance.
Our analysis suggests that the version of the neoclassical

growth model that DICE relies on could be subject to structural
errors on the temporal scales relevant to climate polices. The
Ramsey growth model, and more complex models that en-
dogenize the process of technical change, have been profitably
applied to a variety of empirical questions in macroeconomics. It
is thus important to understand how the use of these models in
DICE and other climate applications differs from their more
standard empirical applications. Growth models are usually used
in empirical applications to explain cross-country differences
between the historical growth paths of different countries. In
BC-IAMs these models are used to predict the absolute level of
global or regional economic output over the coming centuries.
When neoclassical growth models are used to explain differences
in past outcomes across countries, technical change, in the form
of the growth rate of TFP, is formally nothing more than a re-
sidual in a linear regression. It is the part of empirical growth
data that is not explained by the endogenous factors in the model
(i.e., the productivity of capital and labor). If, however, such
models are used to make predictions, as in DICE, the future
realizations of TFP must also be predicted. This requires us to
posit an explicit quantitative model of the evolution of TFP over
the coming decades. However, we have no law-like theory of
long-run technical change that parallels the predictive successes
that have been achieved in the physical sciences (24). This seems
unlikely to change in the near future, and more sophisticated
models that endogenize the process of technological change also

seem unlikely to provide high-powered predictive tools, despite
their more nuanced representation of its causes.{ Just as natural
selection explains differences in species’ phenotypes without
predicting future adaptations, so growth theory has proven to be
an insightful tool for explaining the causal determinants of cross-
country difference in historical growth outcomes. Prediction,
however, is a different matter.

Implications for the Development and Use of BC-IAMs in
Quantitative Policy Applications
What can be concluded from this first example of a model
confirmation exercise for the economic components of a BC-
IAM? Of course, DICE is a single (albeit prominent) example of
a BC-IAM, and its implementation of the Ramsey model a single
(albeit frequently deployed) representation of the process of
long-run economic growth. Our findings are not necessarily
representative of how other growth models might fare in similar
confirmation exercises, the structural validity of other BC-IAMs,
or the performance of their economic components. Our point,
however, is that because most of the economic components of
BC-IAMs have not, to our knowledge, been subjected to em-
pirical tests of structural validity using historical data series, we
do not know what their empirical status is for quantitative policy
applications. Without testing models in hindcasting tasks closely
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Fig. 2. Thirty-year (Left) and 50-y (Right) forecasts of US economic growth from the economic growth model used by DICE. (Left) The solid red line at date T
denotes the realized compound annual growth rate over the period ½T ,T +30�. The dashed black lines at date T denote the forecasted interval for the growth
rate over ½T , T + 30� when the model is trained on data from ½T − 30, T �, using the same estimation and prediction methodology as in Fig. 1. (Right) The
equivalent for 50-y training and verification windows.

{Empirical tests of endogenous growth models suggest they are often more difficult to
reconcile with historical data than simpler neoclassical alternatives (25, 26). Supporting
Information, Endogenous Growth Versions of the DICE Model describes our attempt to
perform a similar model confirmation exercise on two endogenous growth models re-
cently suggested as alternatives to DICE’s model of TFP growth (27). We find that both
models are poorly behaved, being either not specified in a manner amenable to empir-
ical estimation or exhibiting instabilities that cause their predictions to be uncontrolled
when their parameters are estimated from historical data.
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related to the uses we wish to put them to today, we cannot
gauge the extent of any possible model errors.
We close with four recommendations for the testing and use of

BC-IAMs in policy applications. First, those components of BC-
IAMs whose structural properties can be meaningfully tested
using historical data should be. Confirmation exercises can build
confidence in model components that perform well historically
and indicate the range of model parameters that needs to be
considered for a given model to have a chance of making sensible
out-of-sample forecasts. If no such parameter range can be
identified from such an exercise, the model’s structural as-
sumptions might need to be revised for the purposes of policy
applications. Calibration (a within-sample exercise) and para-
metric uncertainty quantification techniques are not substitutes
for this procedure, because we need to test the out-of-sample
performance of a model’s structural assumptions. This is not to
say, however, that untested or structurally flawed models cannot
be useful for illustrating qualitative conceptual points about
alternative modeling assumptions. Many BC-IAMs are used
profitably for this purpose in the academic community today, and
none of our points undermines the value of such modeling ex-
ercises if they are interpreted with sufficient carefulness. The
hurdles a model must jump over to qualify for application to
quantitative policy choices should, however, be more demanding.
Second, the economic components of BC-IAMs should be

based on testable structural hypotheses, in so far as this is pos-
sible. The confirmation exercise we conducted with the DICE
model was only possible because the model is specified in a self-
contained manner, and with sufficient structural detail to allow it
to be meaningfully compared with data. This is a great virtue of
the DICE model. Although in this case our confirmation exercise
raised the possibility of quantitatively meaningful errors when
applying this model to policy questions, we were at least able to
ask (and partially answer) the question, What risks might we run
by assuming that the world behaves in line with the model?
Models that rely more heavily on external scenarios for key
economic components do not allow for this kind of empirical
testing. If a model component cannot be tested, we cannot hope
to gain confidence in it ex ante, even if it in fact turns out to
perform well ex post. Thus, although a set of exogenous scenarios
could turn out to capture our underlying uncertainty, we can

never estimate what risks we might run by assuming this to be the
case when making decisions today. The practice of making the
assumptions in BC-IAMs testable could help to build confidence
in their outputs and filter out plausible from implausible struc-
tural assumptions.#

Third, policy choices should be based on estimates from many
plausible, structurally distinct, models. As we have noted there are
many important aspects of BC-IAMs that we cannot hope to test
empirically today, because the relevant verification data will only
be realized long after current policies are enacted. There is thus
substantial irreducible uncertainty about some of the core struc-
tural relationships in BC-IAMs. Exploring a wide range of struc-
tural assumptions—not just about overall technological change
and economic growth but also about climate damages and abate-
ment costs—is crucial if we wish the policy prescriptions from
modeling exercises to more accurately reflect the extent of our
uncertainty about the consequences of climate policies. In our
view, and that of others (5, 29), the set of BC-IAMs that are
commonly applied in current policy analysis may underestimate
the risks of inaction on climate change, in part because of a
comparative lack of structural heterogeneity.
Fourth, the decision tools that are used to select policies should

reflect the fact that our models are at best tentative predictive
tools. Modern decision theory has developed a rich suite of tools
for rational decision making under deep uncertainty that allow us
to express our lack of confidence in model output, yet most policy
analysis with BC-IAMs still relies on decision tools that treat the
uncertainty in climate policy as if it were of the same character as
tossing a coin or rolling a die (30). We should instead accept the
limits of our knowledge and use decision tools that fit the pro-
foundly uncertain task at hand.
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#Ref. 28 presents a further example of the benefits of hindcasting in a model of US
energy intensity.
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